If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x-1152=0
a = 1; b = 24; c = -1152;
Δ = b2-4ac
Δ = 242-4·1·(-1152)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-72}{2*1}=\frac{-96}{2} =-48 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+72}{2*1}=\frac{48}{2} =24 $
| 5x-11+2x+20+x=180 | | 5x–4x–2=10,x= | | 2y/5+7=17 | | 5x–4x–2=10 | | z/10+7=5 | | 3+x/4=2.12 | | 2x+4/1-x=3 | | 11x-3.11x=22 | | 4s+8=-8 | | 2x+4/(1-x)=3 | | 34=36+4s | | (1/2)*(x(x+8))=280 | | 7x^2+24x-288=0 | | s+4-45=43 | | 8(x-4)+2=4(x+5) | | (1/2)x(x+8)=280 | | 3n=14−4n | | 4x(-12)=16 | | 9x-12=5x+10 | | 24/5x=4/5 | | 5x/14=80 | | 7m-17=45 | | 382(x=8) | | -8-1.3m=2.1m | | 3^x+1/3^x=10/3 | | 9y÷10+3÷5=2y÷5+7÷10 | | 2x(3x+4)-3x(2x-6)=6 | | 8−3q=20 | | x+17/11=4 | | 5(2x+1)-3(x+2)=55 | | 5/8*x=45 | | q-4+5=1 |